An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination.
نویسندگان
چکیده
Several pathogenic strains of Escherichia coli exploit type III secretion to inject "effector proteins" into human cells, which then subvert eukaryotic cell biology to the bacterium's advantage. We have exploited bioinformatics and experimental approaches to establish that the effector repertoire in the Sakai strain of enterohemorrhagic E. coli (EHEC) O157:H7 is much larger than previously thought. Homology searches led to the identification of >60 putative effector genes. Thirteen of these were judged to be likely pseudogenes, whereas 49 were judged to be potentially functional. In total, 39 proteins were confirmed experimentally as effectors: 31 through proteomics and 28 through translocation assays. At the protein level, the EHEC effector sequences fall into >20 families. The largest family, the NleG family, contains 14 members in the Sakai strain alone. EHEC also harbors functional homologs of effectors from plant pathogens (HopPtoH, HopW, AvrA) and from Shigella (OspD, OspE, OspG), and two additional members of the Map/IpgB family. Genes encoding proven or predicted effectors occur in >20 exchangeable effector loci scattered throughout the chromosome. Crucially, the majority of functional effector genes are encoded by nine exchangeable effector loci that lie within lambdoid prophages. Thus, type III secretion in E. coli is linked to a vast phage "metagenome," acting as a crucible for the evolution of pathogenicity.
منابع مشابه
Bacteriophage 2851 is a prototype phage for dissemination of the Shiga toxin variant gene 2c in Escherichia coli O157:H7.
The production of Shiga toxin (Stx) (verocytotoxin) is a major virulence factor of Escherichia coli O157:H7 strains (Shiga toxin-producing E. coli [STEC] O157). Two types of Shiga toxins, designated Stx1 and Stx2, are produced in STEC O157. Variants of the Stx2 type (Stx2, Stx2c) are associated with high virulences of these strains for humans. A bacteriophage designated 2851 from a human STEC O...
متن کاملTranscriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7.
Type III secretion (T3S) plays a pivotal role in the colonization of ruminant hosts by Enterohemorrhagic Escherichia coli (EHEC). The T3S system translocates effector proteins into host cells to promote bacterial attachment and persistence. The repertoire and variation in prophage regions underpins differences in the pathogenesis and epidemiology of EHEC strains. In this study, we have used a c...
متن کاملInteraction between enterohemorrhagic Escherichia coli O157:H7 EspFu and IRSp53 induces dynamic membrane remodeling in epithelial cells.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 induces the formation of filamentous, actin-rich, pedestal-shaped structures beneath bacterial cells that have attached to intestinal epithelial cells. Pedestal formation requires the translocation of EHEC O157:H7 type III effectors. One of these type III effectors, EspFu, consists of an N-terminal signal sequence, which is necessary for the tra...
متن کاملAnalysis of the enterohemorrhagic Escherichia coli O157 DNA region containing lambdoid phage gene p and Shiga-like toxin structural genes.
In this study, we determined the nucleotide sequence of the p gene contained within a 5-kb EcoRI restriction fragment cloned from Shiga-like toxin II (SLT-II)-converting phage 933W of Escherichia coli O157:H7 strain EDL933. The p gene was 702 bp long and had 95.3% sequence similarity to the p gene of phage lambda. Multiple hybridization patterns were obtained when genomic DNA fragments were hyb...
متن کاملDefects in polynucleotide phosphorylase impairs virulence in Escherichia coli O157:H7
Polynucleotide phosphorylase (PNPase) is reported to regulate virulence in Salmonella, Yersinia sp. and Campylobacter jejuni, yet its role in Escherichia coli O157:H7 has not been investigated. To gain insights into its roles in E. coli O157:H7 virulence, pnp deletion mutants were generated and the major virulence factors were compared to their parental wild type strains. Deletion of pnp in E. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 40 شماره
صفحات -
تاریخ انتشار 2006